Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
BMC Digital Health ; 1(1), 2023.
Article in English | EuropePMC | ID: covidwho-2236440

ABSTRACT

COVID-19 mortality prediction Background COVID-19 has become a major global public health problem, despite prevention and efforts. The daily number of COVID-19 cases rapidly increases, and the time and financial costs associated with testing procedure are burdensome. Method To overcome this, we aim to identify immunological and metabolic biomarkers to predict COVID-19 mortality using a machine learning model. We included inpatients from Hong Kong's public hospitals between January 1, and September 30, 2020, who were diagnosed with COVID-19 using RT-PCR. We developed three machine learning models to predict the mortality of COVID-19 patients based on data in their electronic medical records. We performed statistical analysis to compare the trained machine learning models which are Deep Neural Networks (DNN), Random Forest Classifier (RF) and Support Vector Machine (SVM) using data from a cohort of 5,059 patients (median age = 46 years;49.3% male) who had tested positive for COVID-19 based on electronic health records and data from 532,427 patients as controls. Result We identified top 20 immunological and metabolic biomarkers that can accurately predict the risk of mortality from COVID-19 with ROC-AUC of 0.98 (95% CI 0.96-0.98). Of the three models used, our result demonstrate that the random forest (RF) model achieved the most accurate prediction of mortality among COVID-19 patients with age, glomerular filtration, albumin, urea, procalcitonin, c-reactive protein, oxygen, bicarbonate, carbon dioxide, ferritin, glucose, erythrocytes, creatinine, lymphocytes, PH of blood and leukocytes among the most important biomarkers identified. A cohort from Kwong Wah Hospital (131 patients) was used for model validation with ROC-AUC of 0.90 (95% CI 0.84-0.92). Conclusion We recommend physicians closely monitor hematological, coagulation, cardiac, hepatic, renal and inflammatory factors for potential progression to severe conditions among COVID-19 patients. To the best of our knowledge, no previous research has identified important immunological and metabolic biomarkers to the extent demonstrated in our study. Supplementary Information The online version contains supplementary material available at 10.1186/s44247-022-00001-0.

2.
Frontiers in genetics ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2147788

ABSTRACT

Recent studies have shown that, compared with healthy individuals, patients with type 2 diabetes (T2D) suffer a higher severity and mortality of COVID-19. When infected with this retrovirus, patients with T2D are more likely to face severe complications from cytokine storms and be admitted to high-dependency or intensive care units. Some COVID-19 patients are known to suffer from various forms of acute respiratory distress syndrome and have a higher mortality risk due to extreme activation of inflammatory cascades. Using a conditional false discovery rate statistical framework, an independent genome-wide association study data on individuals presenting with T2D (N = 62,892) and COVID-19 (N = 38,984) were analysed. Genome-wide association study data from 2,343,084 participants were analysed and a significant positive genetic correlation between T2D and COVID-19 was observed (T2D: r for genetic = 0.1511, p-value = 0.01). Overall, 2 SNPs (rs505922 and rs3924604) shared in common between T2D and COVID-19 were identified. Functional analyses indicated that the overlapping loci annotated into the ABO and NUS1 genes might be implicated in several key metabolic pathways. A pathway association analysis identified two common pathways within T2D and COVID-19 pathogenesis, including chemokines and their respective receptors. The gene identified from the pathway analysis (CCR2) was also found to be highly expressed in blood tissue via the GTEx database. To conclude, this study reveals that certain chemokines and their receptors, which are directly involved in the genesis of cytokine storms, may lead to exacerbated hyperinflammation in T2D patients infected by COVID-19.

3.
Life (Basel) ; 12(4)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776279

ABSTRACT

(1) Background: Coronavirus disease 2019 (COVID-19) is a dominant, rapidly spreading respiratory disease. However, the factors influencing COVID-19 mortality still have not been confirmed. The pathogenesis of COVID-19 is unknown, and relevant mortality predictors are lacking. This study aimed to investigate COVID-19 mortality in patients with pre-existing health conditions and to examine the association between COVID-19 mortality and other morbidities. (2) Methods: De-identified data from 113,882, including 14,877 COVID-19 patients, were collected from the UK Biobank. Different types of data, such as disease history and lifestyle factors, from the COVID-19 patients, were input into the following three machine learning models: Deep Neural Networks (DNN), Random Forest Classifier (RF), eXtreme Gradient Boosting classifier (XGB) and Support Vector Machine (SVM). The Area under the Curve (AUC) was used to measure the experiment result as a performance metric. (3) Results: Data from 14,876 COVID-19 patients were input into the machine learning model for risk-level mortality prediction, with the predicted risk level ranging from 0 to 1. Of the three models used in the experiment, the RF model achieved the best result, with an AUC value of 0.86 (95% CI 0.84-0.88). (4) Conclusions: A risk-level prediction model for COVID-19 mortality was developed. Age, lifestyle, illness, income, and family disease history were identified as important predictors of COVID-19 mortality. The identified factors were related to COVID-19 mortality.

SELECTION OF CITATIONS
SEARCH DETAIL